कक्षा 7 गणित अध्याय 2 एनसीईआरटी समाधान – भिन्न एवं दशमलव
कक्षा 7 गणित अध्याय 2 भिन्न एवं दशमलव एनसीईआरटी समाधान की प्रश्नावली व्यायाम या एक्सरसाइज 2.1, 2.2, 2.3, 2.4 और 2.5 के हल सभी प्रश्नों के जवाब हिंदी माध्यम तथा अंग्रेजी मीडियम में यहाँ दिए गए हैं। वर्ग 7 गणित अध्याय 2 के सभी प्रश्नों को विस्तार से हल किया गया है तथा सॉल्यूशंस को सत्र 2024-25 के अनुसार संशोधित किया गया है। जो विद्यार्थी मोबाइल से पढ़ते हैं वे तिवारी अकादमी का कक्षा 7 गणित सॉल्यूशंस ऐप मुफ्त में डाउनलोड करके पढ़ सकते हैं। कक्षा 7 गणित के सभी समाधान प्रयोग करने के लिए मुफ्त हैं।
कक्षा 7 गणित अध्याय 2 के लिए एनसीईआरटी समाधान
कक्षा 7 गणित अध्याय 2 के लिए एनसीईआरटी समाधान नीचे दिए गए हैं:
- कक्षा 7 गणित प्रश्नावली 2.1 के हल
- कक्षा 7 गणित प्रश्नावली 2.2 के हल
- कक्षा 7 गणित प्रश्नावली 2.3 के हल
- कक्षा 7 गणित प्रश्नावली 2.4 के हल
- कक्षा 7 गणित प्रश्नावली 2.5 के हल
- कक्षा 7 गणित की एनसीईआरटी पुस्तक
- कक्षा 7 गणित एनसीईआरटी समाधान
- कक्षा 7 सभी विषयों के एनसीईआरटी समाधान
- कक्षा 7 गणित अध्याय 2 अंग्रेजी में
कक्षा 7 गणित अध्याय 2 पर बहुविकल्पीय (MCQ) प्रश्न उत्तर
निम्नलिखित भिन्न का मान होगा: 7 x (3/5) + 4 x (1/3)
भिन्न क्या होती है?
भिन्न एक ऐसी संख्या है जो किसी सम्पूर्ण चीज़ का कोई भाग निरुपित करती है।
उदाहरण:
¾, 2/7 आदि
भिन्न के दो भाग होते हैं:
- (i) भिन्न का अंश
- (ii) भिन्न का हर
किसी भिन्न में अंश और हर क्या होते हैं?
- भिन्न का अंश
किसी भिन्न का अंश, वह भाग होता है जो उस भिन्न के लाइन के ऊपर लिखा होता है। जैसे:
2/5 में 2 भिन्न का अंश है। - भिन्न का हर
किसी भिन्न का हर, वह भाग होता है जो उस भिन्न के लाइन के नीचे लिखा होता है। जैसे:
2/5 में 5 भिन्न का हर है।
भिन्न कितने प्रकार की होती है?
भिन्न के प्रकार
भिन्न के मुख्यतः तीन प्रकार होते हैं:
- उचित भिन्न
वह भिन्न जिसका अंश उसके हर से कम होता है उसको उचित भिन्न कहते हैं। जैसे:
2/3, ¾, 7/11 - विषम भिन्न या अनुचित भिन्न
वह भिन्न जिसका अंश उसके हर से ज्यादा होता है उसको अनुचित भिन्न कहते हैं। जैसे:
4/3, 7/5, 23/15 - मिश्र भिन्न या मिश्रीत भिन्न
ऐसी भिन्न जो एक पूर्णांक एवं भिन्न से मिलकर बनी हो, तो ऐसी भिन्न को मिश्रीत भिन्न कहते हैं। जैसे:
4(2/3), 2(3/5)
भिन्नों के गुणन तथा भाग
- भिन्नों के गुणन
भिन्नों को एक दूसरे से गुणा किया जा सकता है, इस प्रक्रिया में अंश को अंश से तथा हर को हर से गुणा किया जाता है। जैसे:
2/5 x 5/8 = (2 x 5)/ (5 x 8) = 10/40 = 1/4 - भिन्नों के भाग
किसी भिन्न को दूसरी भिन्न से भाग किया जा सकता है।
उदाहरण:
5/7 ÷ 4/9
= 45/28
दशमलव संख्या से आप क्या समझते हैं?
- दशमलव संख्या
दशमलव अंकगणित में वह बिंदु जो संख्या ’10’ पर आधारित संख्या-पद्धति में पूर्णांक के पश्चात और ‘1’ के छोटे अंश के पहले लगाया जाता है। दशमिक भग्नांश जैसे- 0.5, 0.7 आदि। - दशमलव संख्याओं का गुणन
दी गयी दशमलव वाली संख्याओं को दशमलव को बिना ध्यान में रखे गुणा किया जाता है। उसके बाद दोनों संख्याओं में दशमलव के बाद दायीं ओर की संख्याओं को गिनकर गुणनफल में बायीं ओर से गिनते हुए उतनी ही अंकों के बाद दशमलव का चिन्ह लगाया जाता है।
उदाहरण:
2.5 × 1.25
= 3.225
दशमलव संख्याओं का भाग
दशमलव संख्याओं का भाग करने के लिए हमे सबसे पहले ये देखना होता है की भाजक एक पूर्ण संख्या है कि नहीं। अगर भाजक एक पूर्ण संख्या नहीं है तो हमें भाजक को एक पूर्ण संख्या बनाना पड़ेगा। एक भाजक को पूर्ण संख्या बनाने के लिए हमें उसे तब तक 10 से गुना करना है जब तक कि वो एक पूर्ण संख्या न बन जाए।
उदाहरण:
25.5 ÷ 0.5
= 255/10 ÷ 5/10
= 255/10 x 10/5
= 51
कक्षा 7 गणित अध्याय 2 के कुछ मुख्य प्रश्न उत्तर
दशमलव का उपयोग करते हुए निम्नलिखित को रुपये के रूप में व्यक्त कीजिए: (i) 7 पैसे (ii) 7 रुपये 7 पैसे (iii) 77 रुपये 77 पैस
(i) 7 पैसे = 1/100 = 0.07 रुपये
(ii) 7 रुपये 7 पैसे = 7 + 7/100 = 7.07 रुपये
(iii) 77 रुपये 77 पैसे = 77 + 77/100 = 77 + 0.77 = 77.77 रुपये
निम्नलिखित को kg में व्यक्त कीजिए: (i) 200 gm (ii) 3470 gm (iii) 4 kg 8 g
(i) 200 gm = 200/1000 = 0.2 kg
(ii) 3470 gm = 3470/1000 = 3.470 kg
(iii) 4 kg 8 g = 4 + 8/1000 = 4 + 0.008 = 4.008 kg